$\sqrt[\nabla]{\sqrt{ }}$ Utilizing Machine Learning to Predict Bus Delays
 Jungmin Ahn, Joseph Knoth, Steven Nguyen, Tommy Zhang

 METRO

High error margin and utilizes only live bus attributes

No events that cause significantly large delays
Weather, sports, etc.
Buses have same driving pattern
Constrained data sources
Traffic data covering our routes were difficult to find
CIHTH ELILEC:T IDF: Traffic Data (WSDOT,
Tracflow and SDOT)

Important columns include predicted/actual bus arrival times, hourly temperature, and traffic count

	SQL - Filtered out invalid times and joined datasets based on hour - Delay calculation from actual and scheduled arrival time
$\begin{aligned} & 0-0 \\ & c^{40}-\frac{0}{4} \end{aligned}$	Outlier Detection - Neural Network - Not outlier if -900sec $\leq x \leq 900$ sec (for classification compatibility and outlier removal) - Random Forest - Not outlier if (Q1-1.5IQR) $\leq x \leq(Q 3+1.5 I Q R)$ - Applied to delay and speed

トEDNFL NETMDFK

Created a regression model which predicts bus delay and a classification model which predicts on a binned range of delays

Hyperparameters to Test:
Delay = Scheduled Arrival Time - Actual Arrival Time

Hyperparameters to Test:

2.5 min	Mean absolute error for all routes using the
71\% accurate	Predicting on a binned range of 6 minutes usin the classification model
< 2 min	Time required to train with 25 epochs (until convergence)

RFFRIOM FOREST RESULTS

Plots and Visuals

Design a machine learning model based on historical data from KCM and other sources that can improve the accuracy of bus arrival predictions

